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On Kalman Filtering With Nonlinear
Equality Constraints

Simon J. Julier, Member, IEEE, and Joseph J. LaViola, Jr., Member, IEEE

Abstract—The state space description of some physical sys-
tems possess nonlinear equality constraints between some state
variables. In this paper, we consider the problem of applying a
Kalman filter-type estimator in the presence of such constraints.
We categorize previous approaches into pseudo-observation and
projection methods and identify two types of constraints—those
that act on the entire distribution and those that act on the mean of
the distribution. We argue that the pseudo-observation approach
enforces neither type of constraint and that the projection method
enforces the first type of constraint only. We propose a new method
that utilizes the projection method twice—once to constrain the
entire distribution and once to constrain the statistics of the
distribution. We illustrate these algorithms in a tracking system
that uses unit quaternions to encode orientation.

Index Terms—Kalman filtering, quaternions, measurement ma-
trix, nonlinear constraints.

I. INTRODUCTION

SOME physical systems have equality constraints between
their state variables. These constraints can arise for several

reasons. Some constraints arise from the basic laws of physics.
The mass of constituents in a sealed chemical reactor, for ex-
ample, must remain constant throughout the reaction process
[1]. Other constraints arise from the mathematical description
of a state vector. If the state is modelled as a rotation matrix,
the rows of the matrix must be orthonormal [2]. Constraints can
arise from kinematic or geometric considerations of a system.
The coordinated turn model for an aircraft, for example, as-
sumes that the acceleration vector is orthogonal to the velocity
vector [3], [4].

A number of approaches have been developed to apply these
equality constraints within the Kalman filter (KF) framework.
These can be broadly classified into pseudo-observation, pro-
jection and reparameterization methods. The pseudo-observa-
tion method creates a fictitious observation whose variance is
zero [3]–[9]. By substitution, it can be shown that the KF up-
date equations project the state estimate onto the constraint sur-
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face [7]. The projection approach constructs a projection oper-
ator that transforms the estimate so that it lies on the constraint
surface [5], [10]–[12]. The reparameterization approach simply
reparameterizes the system so that the equality constraint is not
required [13]. Since the focus of this work is on examining the
effects of different algorithms for constrained estimation, the
reparameterization approach does not fall within the scope of
this paper.1 Thus, we focus on the first two methods.

In this paper, we argue that although the pseudo-observation
and projection approaches have clear, simple, intuitive interpre-
tations when the constraints are linear, none of these properties
hold when the constraints are nonlinear. The main reason is that
both approaches implicitly assume that if the probability distri-
bution obeys the nonlinear constraint, then the mean of the dis-
tribution (which is the property maintained in the filter) obeys
the constraint as well. The pseudo-observation method makes
the further assumption that the Kalman filter update rule, which
is a linear projection operator, is sufficient to constrain a prob-
ability distribution to a nonlinear surface.

To overcome these difficulties, we propose a two-step con-
straint application method. The first step applies the projection
method to the unconstrained estimate. As a result, the proba-
bility distribution of the estimate is constrained to lie along the
constraint surface. This causes the covariance in the estimate to
decrease. In the second step, the distribution is translated so that
its mean lies on the constraint surface. This, in turn, causes the
covariance in the estimate to increase.

The structure of this paper is as follows. The problem
statement is described in Section II. Section III introduces an
illustrative example which is used throughout much of this
paper: estimating an angle of rotation about a single axis using
complex numbers. We analyze the pseudo-observation and
projection methods and show that they fail. Section IV exam-
ines the properties of the constraints in detail and identifies
two types of constraints. The first type is a constraint on each
sample in the entire distribution. The second type is a constraint
on just the mean of the estimate. We show that neither the
pseudo-observation nor the projection approaches fully satis-
fies either constraint interpretation. Section V derives the new
two-step approach for applying constraints. In Section VI, the
new algorithm is illustrated in a head tracking application that
uses unit quaternions to represent orientation. Conclusions are
drawn in Section VII.

1We assume that if a system has a nonlinear constraint, the designer has deter-
mined that this is an appropriate representation to use. In addition, the compar-
ison between reparameterization and using the constraint algorithms is likely to
be highly system dependent.
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Fig. 1. Constrained filter: The prior estimate is predicted to give x̂(kj(k � 1)). The filter is updated with the observation to give the unconstrained estimate
x̂ (kjk). The constraint is applied to give the final estimate x̂(kjk).

II. PROBLEM STATEMENT

We seek the minimum-mean squared error estimate of the
state vector of the nonlinear discrete time system

where is the state of the system at time step
is the control input vector, is the noise process due to dis-
turbances and modelling errors, is the observation vector,
and is measurement noise. It is assumed that the noise vec-
tors and obey the usual zero mean and independence
assumptions.

An equality constraint exists between the state variables
which can be written in the form

(1)

Furthermore, a projection function exists such that

(2)

for all values of .
We use the notation that the estimate at time step , using all

observations up to time step , is the random vector with
mean and covariance . We require the condition
that the estimate be consistent [14]. In other words

(3)

where is the error in the estimate, and
means that the result is positive semidefinite.

The constraint is to be applied using the architecture shown in
Fig. 1: The filter is initialized, predicted, and updated with the
measurement to give an unconstrained estimate with
covariance . The constraint is applied, and the resulting
estimate obeys the constraint

This form is consistent with Alouani’s suggestion: The con-
straint is only applied to the updated estimate and is thus likely
to be most accurate[4].2

2Exactly the same approach was subsequently proposed by Simon [8].

In the special case where the constraints are linear, the con-
straint and projection equations are [5]

(4)

where and define the linear constraint (such that ),
and is a positive semidefinite weighting matrix that can be
chosen to, for example, minimize .

A number of approaches for estimation in the presence of
these constraints have been derived and, as explained in the in-
troduction, we consider the the pseudo-observation and the pro-
jection methods.

A. Pseudo-Observation Method

The pseudo-observation method generates a fictitious obser-
vation from the constraint function. The observation model is

The value observed from the system is always treated as with
variance . Using the EKF the update is

(5)

(6)

where

and is the Jacobian of evaluated about .3

This approach was first proposed Tahk [3], who consid-
ered the problem of applying linear equality constraints and
then demonstrated a linearized version on a coordinated turn
example. Chia derived the same result when he extended his
batch constrained estimation scheme [15] to a recursive form to
estimate the parameters of electrically stimulated muscles [5].
Doran proposed exactly the same method for economic systems
and showed how it could be used to estimate the determinants
of exchange rate and population growth rates in Australia
[6]. Wen showed that the pseudo-measurement approach was
equivalent to projecting the estimate to the subspace where the
constraint was guaranteed to hold [7]. Takh, Doran, and Wen
all argued that extending the method to nonlinear systems is
straightforward and analogous to the EKF: Simply linearize

3This approach can only be used ifS(k) is invertible. This is normally ensured
by the injection of process noise of the appropriate structure in the prediction
step.
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all the nonlinear equations. To offset linearization errors, they
recommend modifying the constraint equation so that the co-
variance on the pseudo-observation is a non-zero value. Alouani
considered the application of nonlinear constraints to study the
effect of target kinematics [4]. To compensate for linearization
errors and to account for the fact that he was applying a motion
heuristic, he introduced an adaptive weighting scheme that
allowed the noise to decay slowly through time. This causes
the constraint to be applied progressively more tightly.

However, to the best of our knowledge, Geeter was the first
(and only) author to explicitly consider the issue that nonlinear
equality constraints are fundamentally different from linear
equality constraints. He argued that nonlinear constraints are
plagued by two sources of errors: truncation errors and base
point errors [9]. Truncation errors arise because the statistics
of the distribution, which has undergone a nonlinear transfor-
mation, cannot, in general, be calculated precisely. Rather, a
lower order approximation (such as a Taylor Series expansion
truncated to a particular order) must be used. Base point errors
occur because the filter linearizes around the estimated value
of the state rather than the true value. As a result, the constraint
surface is not oriented correctly. To overcome these difficulties,
Geeter developed an algorithm known as the Smoothly Con-
strained Kalman Filter (SCKF) [13]. This algorithm transforms
hard constraints into soft constraints and provides an exponen-
tial weighting term that progressively tightens the constraints.

All of these methods require the injection of stabilizing
process noise into the constraint process, meaning that the
constraint is loose: The state is not guaranteed to obey the
constraint value. In some cases, this is acceptable. In the ap-
plications developed by Takh and Alouani, for example, they
were applying target motion heuristics. However, this approach
is not appropriate when strict mathematical constraints must be
applied. In this situation, the projection approach can be used.

B. Projection Approach

The projection approach applies the projection function di-
rectly to the state estimate. For example, using the EKF, the con-
strained mean and covariance are given by

(7)

(8)

where is the Jacobian of and is calculated about .
From the definition of the projection function in (2), the con-
straint is guaranteed to hold true.

Despite its simplicity, relatively few authors have used
this approach. Nihan considered the problem of estimating
origin-destination matrices for road networks [11]. To conserve
the number of vehicles, the rows of the matrix must sum to
one. Nihan constrained the estimate by dividing each row by its
sum. Azuma considered the problem of estimating the pose of a
human head [10]. He used quaternions to estimate the attitude.
To guarantee the normalization constraint, the quaternion states
were divided by their length. In considering the problem of
enforcing the orthonormal properties of rotation matrices,
Choukroun proposed a method known as optimal brute force

orthogonalization, which is used to find the closest (in the
Frobenius norm sense) orthonormal matrix to a given matrix
[16]. He showed that this was equivalent to the orthogonal
Procrustes problem and that its closed form solution can be
expressed in terms of a projection operation. Durrant-Whyte
considered the problem of applying coordinate transformations
to parameterized geometric objects [17]. Rigid body transfor-
mations introduce constraints between configurations of points
(such as the distances between points do not change). Recently,
Yang considered the problem of tracking ground vehicles
[12]. Nonlinear constraints arise when the state estimates are
constrained to lie on curved roads. He introduced a nonlinear
projection method for second order constraints using Lagrange
multipliers.

Although the pseudo-observation and projection methods
share the property that they project the state estimate to
the constraint surface, they are qualitatively different. The
pseudo-observation method uses the Kalman filter’s linear
update rule. Therefore, the projection operator is linear and
its parameters are chosen to minimize the mean squared error
estimate. The projection method can utilize any projection
operator that is consistent with (2). However, if this operator
takes no account of the covariance matrix, it can actually cause
the covariance to increase [5].

We now illustrate these approaches in a simple example.

III. ESTIMATING ANGLES

Consider the problem of estimating an angle of rotation about
a single axis. One (non-minimal) way to represent this rotation
is to use complex numbers

where .
Fig. 2 shows a set of unconstrained estimates whose mean and

covariances do not satisfy the equality constraint. Each estimate
was generated from calculating the mean and covariance of a
Monte Carlo sample of samples of

(9)

where is a normally distributed random vector for eight dif-
ferent values of the mean (steps of ) and standard deviation

. These unconstrained estimates have several impor-
tant properties.

1) Each individual sample satisfies the nonlinear constraint
.

2) The mean of each distribution has the property .
This is a direct consequence of Jensen’s Inequality [18],
where the constraint is convex, and therefore, its mean
value (for all non-zero values of the covariance) must lie
within the constraint surface.

3) Although the distribution is oriented so that the major
axis is orthogonal to the radial line that passes through the
mean, the covariance is not singular. The reason is that
although and are not independent, the relationship
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Fig. 2. Unconstrained estimates. The mean values lie at+, and the covariances
(1� values) are represented by the dashed ellipse. The unit circle is shown using
dotted lines.

is nonlinear and is not fully described by the correla-
tion structure (which is a first order parameterization of
dependency).

We now illustrate the effect of the constraint algorithms in this
example.

A. Pseudo-Observation

The constraint function can be written as

(10)

Applying a single update does not lead to a normalized estimate
after a single iteration. The reason is that the EKF can be con-
sidered to be a single step in an optimization algorithm [19].
Therefore, an iterated EKF [20] was applied with a threshold of

on the change in the normalized estimate between succes-
sive updates. Each update required no more than eight iterations.

The normalized estimates are shown in Fig. 3. At first sight,
this result seems reasonable: The normalized estimates lie on
the unit circle, showing that the estimate satisfies the constraint.
Furthermore, the effect of the constraint has been reflected in
the covariance matrix: It has collapsed so that all of the un-
certainty now lies on the tangent to the unit circle. However,
this result is not mathematically reasonable because the uncer-
tainty is incompatible with the constraint surface. Consider the
constrained estimate that lies at . Because the variance is
non-zero, there is some uncertainty in this estimate, and so, the
true value can lie at a point where . Because the magni-
tude of the estimate is 1, the magnitude of must decrease as
the magnitude of increases. However, the covariance matrix

Fig. 3. Unconstrained and constrained estimates using the linearized pseudo-
observation method. The unconstrained estimates are the set of dashed ellipses
with means at +. The constrained estimates are shown as solid ellipses (col-
lapsed to lines because the covariances are singular) with means at �. The unit
circle is drawn using a dotted line.

Fig. 4. Unconstrained and constrained estimates using the second order UT
pseudo-observation algorithm. The constrained estimates are the set of dashed
ellipses with means at +. The constrained estimates are shown as solid ellipses
with means at �. The unit circle is drawn as the dotted line.

implies that the value of is known perfectly, and therefore, its
value cannot change.

Geeter proposed that nonlinear constraints are different in two
ways: truncation and base-point errors [9]. To test Geeter’s first
hypothesis, we utilized the second order Unscented Transfor-
mation (UT) [21]. The UT implicitly calculates the second and
higher order terms in the Taylor series expansion about the prior
mean and should thus lead to a more accurate estimate. Since
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Fig. 5. Unconstrained and constrained estimates using the SCKF algorithm.
The unconstrained estimates are the set of dashed ellipses with means at+. The
constrained estimates are shown as solid ellipses (collapsed to short solid lines
in some cases) with means at �. The unit circle is drawn with a dotted line.

this is a 2-D example, a value of leads to the result that
the mean is calculated precisely, and the covariance is calculated
correctly to the second order. The update was repeatedly applied
until the magnitude of the difference between successive esti-
mates was . The results are shown in Fig. 4. Although the
covariance matrices are not singular, the mean values have not
changed significantly from their original unnormalized state.

To test Geeter’s second hypothesis, we applied the SCKF.
Fig. 5 shows the results using Geeter’s recommended value

. Surprisingly, the algorithm fails to converge
to a solution when the nominal angle aligns with one of the
coordinate axes.4 For the results that lie off the coordinate
axes, the results appear slightly better: The covariance matrices
are non-singular. However, the constraint is not obeyed per-
fectly—the norm is 0.984 instead of 1.0.

B. Projection

The projection function we apply is5

(11)

Fig. 6 plots the results using linearization. The constraint
is automatically satisfied, and no iterative scheme is required.
However, once again, the estimate covariance matrix is singular,
and thus, this method suffers from the same difficulties as the
pseudo-observation update. Fig. 7 shows the results when the
UT is applied. The results are similar to those in Fig. 4: The

4We believe this is because the SCKF, like the other pseudo-observation
methods, actually requires stabilizing noise to be injected into state estimate.
The correct implementation of the SCKF should interleave a single iteration
of the constraint equation between the normal Kalman filter prediction-update
cycles [22].

5This function, rather than y =
p
1� x , was chosen because both x and y

are guaranteed to be real for all kxk > 0.

Fig. 6. Unconstrained and constrained estimates using the linearized projection
algorithm. The unconstrained estimates are the set of dashed ellipses with means
at+. The constrained estimates are shown as solid ellipses with means at �. The
unit circle is drawn as the dotted line.

Fig. 7. Unconstrained and constrained estimates using the UT projection algo-
rithm. The unconstrained estimates are the set of dashed ellipses with means at
+. The constrained estimates are shown as solid ellipses with means at �. The
unit circle is drawn with the dotted line.

constrained mean does not move significantly from the uncon-
strained mean. However, the covariance is now slightly larger.

This example illustrates that both the pseudo-observation
and projection approaches lead to undesired behaviors: The
linearized approaches lead to singular covariance matrices; the
higher order versions of these transformations lead to mean
estimates whose values do not change; Geeter’s algorithm leads
to an unnormalized estimate or an estimate with zero variance.
We believe that this example is not an isolated special case but
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arises from a misunderstanding as to what constraint is being
satisfied.

IV. MEANING OF CONSTRAINTS

We believe that the difficulties illustrated in the previous
section arise from the fact that there are, in fact, two types of
constraints that can be defined. The first type—Type I con-
straints—apply a constraint to each point of the distribution

Type II constraints are constraints on the estimate propagated
by the Kalman filter. These are normally posed as constraints
on the mean estimate

Type I constraints provide information about the entire shape
of the probability distribution of . This provides additional
information and reduces the uncertainty in the distribution. A
Type II constraint, however, only specifies information about the
expected value of the distribution of ; no other information
is provided. Therefore, a Type II constraint does not provide suf-
ficient information to reduce the uncertainty in the distribution.

The relationship between the two types is laid out in the fol-
lowing theorem.

Theorem 1: The Type I constraint subsumes the Type II con-
straint only if the constraint is linear.

Proof: Assume the Type I constraint holds. Ignoring the
time index for convenience, each sample in the constrained dis-
tribution obeys the property

Equivalently, each sample can be obtained from

where is a sample in the unconstrained distribution. Now, the
Type II constraint is obeyed if

However, since

obeys the Type II constraint if it can be written as

Therefore, the Type I constraint subsumes the Type II constraint
if there exists a such that

In general, this can only be satisfied if is linear.

Fig. 8. Effect of the pseudo-observation method on the unnormalized distribu-
tion. The unit circle is drawn as a dashed line and the Monte Carlo samples as
points. (a) Overall view. (b) Detailed view.

This theory has been demonstrated by the example in
Section III. The original Monte Carlo sample was drawn so that
the Type I constraint was satisfied, but the Type II constraint
was not satisfied.

The properties of the pseudo-observation algorithm can be
assessed in terms of Type I and Type II constraints.

Theorem 2: The pseudo-observation approach applies the
Type I constraint only if either a) all samples obey the Type I
constraint already or b) if the Type I constraint is linear.

Proof: Consider the pseudo-observation update (5). Ap-
plying it to each sample in the distribution gives

(12)

In the case where the Type I constraint is already obeyed,
; therefore, no update occurs. If the Type I

constraint is not obeyed, the sample is moved by a weighted
value of the constraint equation. If the translated sample is to
obey the nonlinear constraint, it must now obey the condition

This only obeys the result in general if the constraint is linear.
This can be seen by substituting the linear projection function
(4) determined earlier.

The first part of this theory has been demonstrated by the re-
sults in Section III-A. Each sample in the unconstrained estimate
was drawn such that the normalization constraint was obeyed.
Therefore, when a higher order update strategy was used, the
mean did not change.6 The second part of this theory is illus-
trated in Fig. 8(a). One thousand unnormalized samples were
drawn at random, and (12) was applied to each one. As can be
seen, the points do not lie on the circle. Rather they lie on a
parabola (due to the quadratic term in (10)). Near the mean term
(1,0), the transformed points appear to lie close to the unit circle.
However, Fig. 8(b) shows a close in view. Although many of the
samples lie on the unit circle, many lie within it as well.

By contrast, the projection method always guarantees that the
Type I constraint is applied. This follows trivially from the def-
inition of the projection operator in (2). However, because of

6The covariance was reduced slightly because the UT only approximates
terms up to the fourth order and does not capture them completely.
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Jensen’s inequality, the mean of this distribution does not lie
upon the unit circle but within it.

V. NEW APPROACH FOR APPLYING NONLINEAR

EQUALITY CONSTRAINTS

The analysis in the previous section shows that there are sig-
nificant problems with existing algorithms for applying non-
linear constraints: The projection method enforces the Type I
constraint, but this does not guarantee that the Type II constraint
will be satisfied. The pseudo-observation method does not guar-
antee that either type of constraint will be satisfied.

We propose that the nonlinear equality constraints should be
applied in a two-step process of applying the Type I constraint
followed by the Type II constraint.

A. Applying the Type I Constraint

Suppose the unconstrained estimate has mean and
covariance . The first step is to apply the Type I con-
straint. This constrains the state distribution and, thus, causes the
covariance to decrease. As the analysis in the previous section
has shown, the pseudo-observation method provides a poor ap-
proximation to this constraint. Therefore, the projection method
should be applied. Let be the Type I constrained estimate.
Therefore

The mean of the Type I constrained estimate is cal-
culated from

The covariance is calculated in a similar manner.
It is important to note that the projection operator can contain

multiple degrees of freedom, such as in (4). The degree of
freedom must be chosen to minimize some suitable measure of
uncertainty, such as the trace or determinant of .

B. Applying the Type II Constraint

According to Theorem 1, will not, in general, obey
the Type II constraint. Therefore, we apply the projection oper-
ator to the Type I constrained estimate to generate a new con-
strained mean

However, is the constrained estimate with the min-
imum mean squared error. By moving the estimate to a different
value, the filter ceases to propagate the conditional mean, and
the covariance must increase so that

(13)

Fig. 9. The 1� contours for estimates constrained using the two-step algorithm.
The estimates are shown as solid ellipses with centers at �. The unconstrained
estimates are the dashed ellipses with centers at +, and the unit circle is the
dotted line.

Again, may contain free parameters, and these need to be
chosen so that the uncertainty in is minimized.

The effect of this two-step process is shown in Fig. 9 using
the projection function (11), and the cost metric was to minimize

.
As the figure shows, the mean of the estimate obeys the nor-

malization constraint. The covariances are non-singular and are
qualitatively similar in shape to the unconstrained estimates.
Fig. 10 shows the effect of the two-step algorithm on 1000
Monte Carlo samples: The Type I constraint projects the points
to lie on a circular arc, and the Type II constraint offsets the
points such that the mean lies on the unit circle.

We now illustrate this algorithm on a platform tracking
example.

VI. PLATFORM TRACKING EXAMPLE

We consider a vision-based head tracking system. The system
is composed of a head-mounted camera that moves through an
environment that is populated by a set of landmarks in known
locations. The position, orientation, and velocity of the camera
is to be estimated based on its observations of those landmarks
[23]. Because the camera is head mounted, it can undergo sig-
nificant linear and angular accelerations.

Orientation is part of the group and can be represented
by three parameters using a number of different representations,
such as Euler angles [24] and the exponential map [25]. How-
ever, all minimal parameterizations possess singularities that
can lead to filter instability. The unit quaternion is the lowest
dimensional nonsingular attitude representation [13] and has
been widely used in augmented reality applications [23], [26].
However, it introduces the nonlinear equality constraint that
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Fig. 10. Effect of the two-step method on the unnormalized distribution. The
unit circle is drawn with the dashed line, and the Monte Carlo samples are drawn
as points.

the norm of the quaternion states must be one. Hybrid param-
eterizations, such as the multiplicative extended Kalman filter
[13], have been developed that store errors in a three-component
vector and global orientation as a unit quaternion. Periodically,
the error vector is reset, and its effects are multiplied into the
global quaternion. Although these methods automatically guar-
antee that the unit quaternion is preserved, they do so by repa-
rameterizing the problem and, as explained earlier, do not fall
within the scope of this paper.

We use the quaternion representation from Davison [23], and
the state space is

where is the position, is
the orientation (represented as a unit quaternion [27]),

is the velocity, and is the angular
velocity.

The discrete-time process model is

where is the unknown acceleration, and is the un-
known angular acceleration that acts on the camera at each time
step. is the skew symmetric matrix given by [10]

where

Let be the rotation matrix encoded by and be
the intrinsic matrix. Let be the location of the th beacon in
3-D. The camera observes the pixel position of on the
imaging plane. This is given by

where

and is the additive observation noise.
The camera is a UniBrain Fire-I camera with an 85 field

of view lens and a frame rate of 30 frames/s. is a diag-
onal whose non-zero elements have a standard deviation of 0.2
pixels. Assuming that lens distortion correction has already been
applied

Because the camera is handheld, it can experience extremely
rapid and unmodelled motions. Davison addresses these by
using very large values for the process noise standard devia-
tions: 2 ms for linear acceleration and 4 rads for angular
acceleration. The initial covariance is diagonal. The standard
deviations on the positions are 0.1 m, the standard deviations
on each quaternion value is , the linear velocity 2 ms ,
and angular velocity 3.16 rads .

The construction of assumes that the quaternion is nor-
malized. If the quaternion is not normalized, does not cor-
respond to a rotation matrix and, in general, may not have real
eigenvalues [13]. Therefore, normalization is extremely impor-
tant. The constraint and projection functions are

(14)

To test the performance of the filters, 2000 Monte Carlo runs
were performed, and the average normalized state error was cal-
culated. The normalized state error is defined as

Using the normalized state error provides a more precise mea-
sure of consistency than looking at state estimates and covari-
ances individually because this metric takes into account the
cross correlations between the states as well. The mean value
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TABLE I
MEAN NORMALIZED STATE ERRORS FOR ALL FILTERS AND THE DECOMPOSITION FOR INDIVIDUAL SUBSETS OF STATES. THE FIRST LINE GIVES THE DESIRED

VALUES. THE FIRST FIVE COLUMNS GIVE THE NORMALIZED STATE ERROR FOR THE ENTIRE STATE VECTOR AND FOR THE POSITION, QUATERNION,
VELOCITY, AND ANGULAR VELOCITY STATES. THESE WERE CALCULATED WHEN THE MAXIMUM AVERAGE NORMALIZED STATE ERROR IS 20.

THE FINAL COLUMN LISTS THE NORMALIZED STATE ERROR WHEN THE ANGLE STATE ERROR THRESHOLD WAS RAISED TO 100

of should be the same as the dimensions of the state. In
this case, the value is 13.

Seven filters were implemented where the only difference be-
tween them was the algorithm used to enact the normalization
step. The algorithms were chosen to compare those found in the
literature with our two-step method and to explore the effects of
linearization and higher order transformations.

• displOffNoP: This is the simplest method. The Type II
constraint is satisfied simply by displacing the mean to es-
nure that the Type II constraint only is applied. The covari-
ance is unchanged. Therefore

This approach was used by Davison [23].
• displOff: Like above, the Type II constraint is satisfied by

displacing the mean. However, the covariance is updated
to reflect the fact that the mean has been displaced

This illustrates the effect of the second step in the two-step
process.

• pseudoLinOff: Apply (5) and (6). Because the estimate
does not obey the Type II constraint, the displOff algo-
rithm was used to reposition the estimate. We did not use
the IEKF approach from Section III-A because the filter al-
ways diverged.

• pseudoUnsOff: Apply (5) and (6) but use the unscented
transformation. Again, because the estimate does not obey
the Type II constraint, the displacement offset algorithm
was used to reposition the estimate.

• SCKF: Apply the smoothly constrained Kalman filter [9]
for tight constraints using .

• projLin: Apply linearized forms of (7) and (8).
• projUnsOff: This is the two-step algorithm: The projec-

tion method is applied using the UT, and the estimate is
displaced so that the Type II constraint is satisfied.

Two important limitation were encountered. First, if the an-
gular error becomes large, the filters would diverge, irrespective
of the normalization algorithm used. We believe this is a fun-
damental limitation of using the Kalman filter with a linear up-
date rule and a simple state representation with a single mean

and covariance. We found that a simple method for indicating
if the angular bounds were exceeded was to test the normal-
ized state error of all filters. If all of them exceeded a minimum
value, it was assumed that the angular error constraints were ex-
ceeded and the run was excluded from the results. Two thresh-
olds—20 and 100—were used, and the results are discussed
below. Second, exhibited numerical instabilities for the
pseudoLinOff and projLin algorithms. These algorithms pro-
duced (nearly) singular matrices with extremely large
condition numbers. An example of the problem was discussed
in Section III-A: The covariance matrix is singular in a direction
in which a non-zero error must occur. To generate finite results
for comparison purposes, we used a modified form the normal-
ized state error for these filters of the form

where is a small constant, and is a matrix with ones
on the diagonals for states 4–7 (corresponding to the quater-
nions) and zeros elsewhere.

The performance of the filters was calculated over 2000
Monte Carlo runs, and the means of the normalised state errors,
calculated across all runs, are presented in Table I. The two
linearized solutions (pseudoLinOff and projLin) perform ex-
tremely poorly. The pseudoUnsOff filter performed somewhat
better, but its results were still very poor. This illustrates the
inadequacies of the the pseudo-observation equations, even
when higher order prediction methods are used. The SCKF
fares moderately well, but at no point is the quaternion estimate
truly normalized—its lower and upper bound lies between 0.98
and . The two best behaving algorithms were displOff
(the second step in the two-step algorithm) and the two-step
algorithm itself. The two-step algorithm is the only algorithm
that is consistent. To perform a more finegrained analysis of the
performance of the filters, we calculated the normalized state
errors for the position, quaternion, linear, and angular velocity
subvectors only. The results, also shown in Table I, indicate
that the effects of the constraint algorithms are most strongly
felt by the quaternion estimates themselves. These are strongly
tied to the estimates of position and angular velocity. Linear
velocity is affected less by the normalization rule.

Because the platform starts from rest and is buffeted by
random noise, the variance in the angular and linear velocities
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Fig. 11. Natural logarithm of the normalized state error for the different filters.
pseudoLinOff and projLin have the largest means, with values about 30. dis-
pOffNoP lies in the middle with a mean of about 15. dispOff, pseudoUnsOff,
SCKF, and projUnsOff all have means of around 2.5.

increase over time. To study if these have an effect on the
filters, Fig. 11 plots the mean normalized trajectories over the
duration of the run. The results show that for most filters, the
mean squared error profiles remain about the same through the
entire run. However, both the projLin and SCKF filters show
step changes: the former at about 10s and the latter at about 6s.
We believe that these are caused by repeated divergence of the
filters at these timesteps because, at large linear and angular
velocities, the effects of errors become more significant.

As explained above, we used a threshold to determine if a run
was not valid. The last column of the table shows the results of
2000 Monte Carlo runs when the threshold was increased from
20 to 100, allowing runs with larger angular errors through. In
this situation, the normalized errors in all filters increase, and
all filters are inconsistent. However, the projUnsOff filter is less
affected than the other filters, indicating that it is more robust
than the other algorithms in the presence of large angular errors.

VII. CONCLUSION

This paper has considered the problem of applying a Kalman
Filter-type estimator to a system with nonlinear equality con-
straints between its state space variables. We have focused
on two methods—the pseudo-observation and projection
methods—for incorporating these constraints, and we have pro-
posed two different definitions of constraints. Type I constraints
define the shape of the entire distribution; Type II constraints
only limit the conditional mean propagated in the filter.

We have argued that the pseudo-observation method has little
theoretical rigor and enforces neither the Type I nor the Type II
constraints. The projection method ensures that the Type I con-
straint is satisfied, but the Type II constraint is not. To overcome
these difficulties and to have a consistent estimate that obeys the
Type II constraint, we have proposed a two-step process. In the
first step, the Type I constraint is applied using the projection
method across the entire distribution. This causes the covari-
ance to reduce. The second step applies the projection method
again, this time to the conditional mean, to ensure that the Type
II constraint is satisfied. This causes the covariance to increase.
We have also demonstrated the performance of the algorithm in
a platform tracking example, which is characterized by strong

linear and angular accelerations and is thus prone to larger un-
certainties. The two-step method was shown to be the only al-
gorithm that was consistent with small angular errors, and when
large angular errors are permitted, its performance degrades less
severely.

There are a number of avenues for future work. First, the oper-
ation of the projection function should be studied in more detail.
The current algorithm only moves the states that are directly af-
fected by the constraint. However, all the states should be poten-
tially affected. A similar behavior is observed when inequality
constraints are applied [28]. The effect of using the second-order
projection operator described in [12] could also be investigated.
Second, the effects of different cost functions on the perfor-
mance of filters should be examined. Third, as we explained in
the introduction, there is a third way to circumvent nonlinear
equality constraints, which is to reparameterize the system so
that they are not needed. A useful area of research would be to
compare the performance of different tracking algorithms to see
if an over-constrained representation actually provides benefits
or not. Finally, the example itself raises the question as to what is
the best representation of orientation in head tracking problems.
Although many parameterizations of orientation have been pro-
posed, few have been directly compared against one another to
ascertain their impact on estimator performance.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their many
highly useful comments and, in particular, for drawing their at-
tention to the MEKF algorithm [13] and for suggesting some of
the proposed work in the conclusions section.

REFERENCES

[1] E. L. Haseltine and J. B. Rawlings, A critical evaluation of extended
Kalman filtering and moving horizon estimation Texas-Wisconsin
Modeling and Control Consortium (TWMCC), , Tech. Rep. 2002–03,
Mar. 12, 2003.

[2] I. Y. Bar-Itzhack and J. Reiner, “Recursive attitude determination from
vector observations: DCM identification,” J. Guidance, Control Dyn.,
vol. 7, no. 1, pp. 51–56, —Feb. 1984.

[3] M. Tahk and J. L. Speyer, “Target tracking problems subject to kine-
matic constraints,” IEEE Trans. Autom. Control, vol. 35, no. 3, pp.
324–326, Mar. 1990.

[4] A. T. Alouani and W. D. Blair, “Use of a kinematic constraint in
tracking constant speed, maneuvering targets,” IEEE Trans. Autom.
Control, vol. 38, no. 7, pp. 1107–1111, Jul. 1993.

[5] T. Chia, P. Chow, and H. J. Chizeck, “Recursive parameter identifica-
tion of constrained systems: An application to electrically stimulated
muscle,” IEEE Trans. Biomed. Eng., vol. 38, no. 5, pp. 429–442, May
1991.

[6] H. E. Doran, “Constraining Kalman filter and smoothing estimates to
satisfy time-varying restrictions,” Rev. Econom. Statist., vol. 74, no. 3,
pp. 568–572, 1992.

[7] W. Wen and H. F. Durrant-Whyte, “Model-based multi-sensor data fu-
sion,” in Proc. IEEE Int. Conf. Robotics Automation. : IEEE Press,
May 1992, pp. 1720–1726.

[8] D. Simon and T. Chia, “Kalman filtering with state equality con-
straints,” IEEE Trans. Aerosp.Electron. Syst., vol. 39, no. 1, pp.
128–136, Jan. 2002.

[9] J. D. Geeter, H. V. Brussel, and J. De Schutter, “A smoothly con-
strained kalman filter,” IEEE Trans. Pattern Anal. Machine Intell., vol.
19, no. 10, pp. 1171–1177, Oct. 1997.

[10] R. Azuma, “Predictive Tracking for Augmented Reality,” Ph.D. disser-
tation, Univ. North Carolina, Chapel Hill, 1995.

[11] N. L. Nihan and G. A. Davis, “Recursive estimation of origin-destina-
tion matrices from input/output counts,” Transport. Res. B, vol. 21B,
no. 2, pp. 149–163, 1987.



2784 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 6, JUNE 2007

[12] C. Yung and E. Blasch, “Kalman filtering with nonlinear state con-
traints,” in Proc. FUSION’06: 9th Int. Conf. Inform. Fusion. Flo-
rence, Italy: ISIF, Jul. 10–14, 2006.

[13] L. Markley, “Attitude error representations for Kalman filtering,” J.
Guidance, Control Dyn., vol. 26, no. 2, pp. 311–317, 2003.

[14] Y. Bar-Shalom and T. E. Fortmann, Tracking and Data Association.
New York: Academic, 1988.

[15] T. Chia, “Parameter Identification and State Estimation in Constrained
Systems,” Ph.D. dissertation, Case Western Reserve Univ., Cleveland,
OH, 1986.

[16] D. Choukroun, “Novel Methods for Attitude Determination Using
Vector Observations,” Ph.D. dissertation, Technion—Israel Inst.
Technol., Haifa, Israel, May 2003.

[17] H. F. Durrant-Whyte, “Uncertain geometry in robotics,” IEEE J.
Robotics Automat., vol. 4, no. 1, pp. 23–31, Feb. 1988.

[18] R. L. Wheeden and A. Zygmund, Measure and Integral: An Introduc-
tion to Real Analysis. : Marcel Dekker, 1977.

[19] R. L. Bellaire, E. W. Kamen, and S. M. Zabin, “A new nonlinear it-
erated filter with applications to target tracking,” in Proc. AeroSense:
8th Int. Symp. Aerospace/Defense Sensing, Simulation and Controls,
Orlando, FL, Apr. 1995, vol. 2561, pp. 240–251.

[20] A. H. Jazwinski, Stochastic Processes and Filtering Theory. San
Diego, CA: Academic, 1970.

[21] S. J. Julier, J. K. Uhlmann, and H. F. Durrant-Whyte, “A new approach
for the nonlinear transformation of means and covariances in filters and
estimators,” IEEE Trans. Automat. Control, vol. 45, no. 3, pp. 477–482,
Mar. 2000.

[22] J. D. Geeter, Personal Communication Feb. 2004.
[23] A. J. Davison, “Real-time simultaneous localisation and mapping with

a single camera,” in Proc. Int. Conf. Computer Vision (ICCV), Nice,
France, Oct. 13—16, 2003.

[24] E. Foxlin, “Inertial head-tracker sensor fusion by a complementary sep-
arate-bias kalman filter,” in Proc. IEEE Virtual Reality Annu. Symp.,
Santa Clara, CA, Mar. 30–Apr. 3 1996, pp. 185–194.

[25] F. S. Grassia, “Practical parameterization of rotations using the expo-
nential map,” J. Graphics Tools, vol. 3, no. 3, pp. 29–48, 1998.

[26] R. Azuma and G. Bishop, “Improving static and dynamic registration
in an optical see-through HMD,” in Proc. SIGGRAPH ’94, Jul. 1994,
pp. 197–204.

[27] J. B. Kuipers, Quaternions and Rotation Sequences. Princeton, NJ:
Princeton Univ. Press, 1999.

[28] N. Shimada, Y. Shirai, Y. Kuno, and J. Miura, “Hand gesture estima-
tion and model refinement using monocularcamera-ambiguity limita-
tion by inequality constraints,” in Proc. Third IEEE Int. Conf. Auto-
matic Face Gesture Recognition, Nara, Japan, Apr. 14–16, 1998, pp.
268–273.

Simon J. Julier (M’93) is a Senior Lecturer at the
Vision, Imaging, and Virtual Environments Group,
Computer Science Department, University College
London (UCL), London, U.K. Before joining UCL,
he worked for nine years at the 3D Mixed and
Virtual Environments Laboratory, Naval Research
Laboratory, Washington, DC, where was PI of the
Battlefield Augmented Reality System (BARS): a
research effort to develop man-wearable systems
for providing situation awareness information. He
served as the Associate Director of the 3DMVEL

from 2005 to 2006. His research interests include user interfaces, distributed
data fusion, nonlinear estimation, and simultaneous localization and mapping.

Joseph J. LaViola, Jr. (M’06) received the SC.M de-
gree in computer science in 2000, the SC.M. degree
in applied mathematics in 2001, and the Ph.D. degree
in computer science in 2005, all from Brown Univer-
sity, Providence, RI.

He is an assistant professor with the School of
Electrical Engineering and Computer Science, the
University of Central Florida, Orlando, as well as
an adjunct assistant research professor with the
Computer Science Department, Brown University.
His primary research interests include pen-based

interactive computing, 3D interaction techniques, predictive motion tracking,
multimodal interaction in virtual environments, and user interface evaluation.
His work has appeared in journals such as Presence and IEEE COMPUTER

GRAPHICS AND APPLICATIONS, and he has presented research at conferences in-
cluding ACM SIGGRAPH, the ACM Symposium on Interactive 3D Graphics,
IEEE Virtual Reality, and Eurographics Virtual Environments. He has also
co-authored 3D User Interfaces: Theory and Practice, which is the first
comprehensive book on 3D user interfaces.


